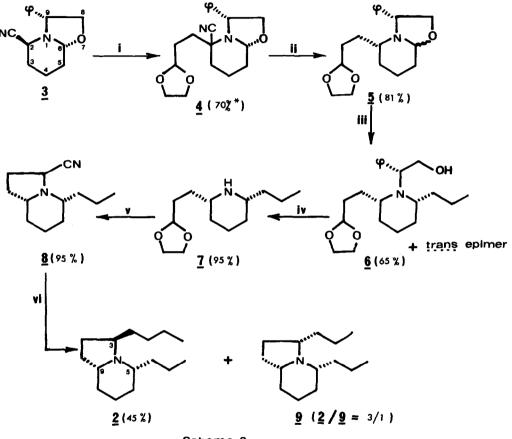
ASYMMETRIC SYNTHESIS III¹. ENANTIOSPECIFIC SYNTHESIS OF THE NATURAL 3R, 5R, 9R (-) GEPHYROTOXIN-223 AB

Jacques Royer and Henri-Philippe Husson*

Institut de Chimie des Substances Naturelles du CNRS 91190 Gif-sur-Yvette, France

Abstract

The first enantiospecific synthesis of the indolizidine alkaloid (-) gephyrotoxin-223 AB 2 has been achieved from the chiral 2-cyano-6-oxazolopiperidine synthon 3.


Recently, we reported the first enantiospecific total synthesis of the ant trail pheromone (-) monomorine I, 1 (scheme 1) which permitted the assignement of the absolute configuration for the natural (+) enantiomer ¹. A key feature in our approach was the development of methods for the stereoselective introduction of substituents at the C-2 and C-6 centers of the chiral 1,4-dihydropyridine equivalent 3² (scheme 2) thus fixing the absolute configuration at C-5 and C-9 centers (indolizidine numbering) of 1. Another merit of this pathway was the observation that nucleophilic attack (H⁻) at position C-3 of the intermediate $>N^+ = C-3$ pyrrolidinium ion occurred preferentially from the β face of the molecule ¹.

Since monomorine I $\underline{1}$ and gephyrotoxin-223 AB $\underline{2}$ essentially differ in the stereochemistry at C-3 we were prompted to undergo the asymmetric synthesis of the latter alkaloid in order to test the flexibility of our strategy.

The structure and relative configuration of gephyrotoxin-223 AB $\underline{2}$, a neurotoxic alkaloid extracted from the skin of tropical frogs, have been well established 3,4 but the absolute configuration of this molecule remained unknown. We thus arbitrarily choose to prepare 3R, 5R, 9R enantiomer of $\underline{2}$ following a variation of the scheme that was used for the introduction of 5,9-dialkyl cis substituents of 3S, 5R, 9R (-) monomorine I, $\underline{1}^{1}$.

Scheme 2

<u>Reagents</u> i) LDA, THF, -78°C, BrCH₂CH₂-CH₀, 3h. ; ii) AgBF₄, THF, 5 min., r.t. Zn(BH₄)₂, -50°C, 1 h. ; iii) PrMgBr, ether, -50°C, 1 h. ; iv) H₂, Pd/C 10%, MeOH, 30 min. ; v) CH₂Cl₂-HCl 1N, KCN ; vi) nBuMgBr, ether, 0°C. * Yields of pure isolated products.

Alkylation of the anion of 3^{2} with 3-bromo-1-pentanal ethylene ketal led to the formation of a single product 4^{6} . The cyano group of 4 was then selectively cleaved by complexation with AgBF₄ and treatment with $\text{Zn}(\text{BH}_{4})_2$ at low temperature. As previously observed compound 5 was obtained as a 3:2 mixture of C-6 epimeric oxazolidines ¹. The reaction of epimeric 5 with PrMgBr gave the desired cis compound 6^{7} accompagnied by small amounts of its trans epimer (cis/trans : 85/15).

Hydrogenolysis of <u>6</u> led to <u>7</u>⁸ which was treated in a biphasic medium $(CH_2CI_2-H_2O)$ with HCI 1N and KCN (pH 3-4) to furnish the aminonitrile <u>8</u>⁹ as a single epimer. Finally the butyl side chain was introduced stereoselectively at C-3 of <u>8</u> on reaction with BuMgBr ; as anticipated ^{1,5} this reaction generated preferentially the desired R epimer (R/S : 7/3).

Synthetic (-) gephyrotoxin-223 AB $\underline{2}^{10}$ (45% from $\underline{8}$) $[\alpha]_D^{20}$ -101° (n-hexane, C 2.3) exhibited spectral data (¹H and ¹³C NMR and mass spectra) identical to those published for the racemic material ^{4a}.

As our synthetic material exhibited the same sign of optical rotation as the natural product, we can then deduced that the absolute configuration of the natural (-) gephyrotoxin 223 AB is 3R, 5R, 9R 11 .

In conclusion we have devised a method for the synthesis of chiral indolizidine alkaloids that could be extended to the preparation of a large variety of derivative and be specially useful for the determination of relative and absolute configuration of natural products isolated in trace amounts ¹².

References and Notes

- 1 For part II see : J. Royer and H.-P. Husson, J. Org. Chem., 1985 in press.
- 2 L. Guerrier, J. Royer, D.S. Grierson and H.-P. Husson, <u>J. Am. Chem. Soc.</u>, 1983, 105, 7754.
- 3 A non stereoselective synthesis of (±)gephyrotoxin-223 AB led to the formation of the four racemic possible diastereoisomers : T.F. Spande, J.W. Daly, D.J. Hart, Y.M. Tsai and T.L. Macdonald, <u>Experientia</u>, 1981, <u>37</u>, 1242. All further stereoselective synthesis have afforded (±) gephyrotoxin-223 AB stereoisomers but not the natural product ⁴.
- a) T.L. Macdonald, <u>J. Org. Chem.</u>, 1980, <u>45</u>, 193; b) R.V. Stevens and A.W.M. Lee, <u>J. Chem. Soc. Chem. Commun.</u>, 1982, 103; c) D.J. Hart and Y.M. Tsai, <u>J. Org. Chem.</u>, 1982, <u>47</u>, 4403.
- 5 N. Maigrot, J.-P. Mazaleyrat and Z. Welvart, <u>J. Chem. Soc. Chem. Commun.</u>, 1984, 40.
- 6 $\underline{4}$: mp 45-50°C (hexane-ether); MS m/e (relative intensity) : 328 (M⁺, 17), 327 (17), 228 (22), 227 (44), 104 (100), 91 (22); ¹H NMR (CDCl₃, 400 MHz) : 1-2 ppm (m, 10H, CH₂), 3.55 (m, 4H, OCH₂-CH₂O), 3.73 (dd J = 8.5 Hz, J' = 4.5 Hz, 1H, H-8 or H-9), 4.0 (dd, J = 8.5 Hz, J' = 4.5 Hz, 1H, H-8 or H-9), 4.0 (dd, J = 8.5 Hz, J' = 4.5 Hz, 1H, H-8 or H-9), 4.14 (dd,

J = 9.5 Hz, J^I = 2.5 Hz, 1H, H-6), 4.26 (t, J = 8.5Hz, 1H, H-8 or H-9), 4.45 (t, J = 3.75Hz, 1H, H-C^O₀), 7.3 (m, 5H, ar.); ¹³C NMR (CDCl₃, 50 MHz) : 20.1 (C-4) 28.4 (C-11), 29.6 (C-5), 33.2 (C-10), 34.5 (C-3), 62.1 (C-2), 62.4 (C-9), 64.9 (OCH₂CH₂O), 74.8 (C-8), 92.2 (C-6), 103,1 (C \leq_{0}^{0}), 118.5 (CN), 127.4, 127.2, 128.6, 144.2 (ar.).

- 7 <u>6</u>: oil; MS (c.i) m/e: 348 (MH⁺), 330, 228; ¹H NMR (CDCl₃, 400 MHz) 0.82 (t, J = 7 Hz, 3H, CH₃), 0.95-1.9 (m, 14H, CH₂), 2.78 and 2.96 (2m, 2H, H-2 and H-6), 3.75-4.0 (m, 7H, OCH₂CH₂O, H-8, H-9), 4.86 (t, J = 4 Hz, 1H, $H-C <_{0}^{\circ}$), 7.33 (m, 5H, ar.); microanalysis, calcd. for C₂₁H₃₃NO₃: C 72.58, H 9.57, N 4.03, found : C 72.24, H 9.47, N 4.07.
- 8 $\underline{7}$: oil ; MS, m/e (relative intensity) : 227 (M^{+.} 6), 226 (5), 184 (78), 155 (10), 126 (100), 112 (30) ; ¹H NMR (CDCl₃, 400 MHz) 0.9 (t, J = 7 Hz, 3H, CH₃), 1-1.9 (m, 14H, CH₂), 2.67 (m, 2H, H-2 and H-6) 3.83 and 3.96 (2m, 4H, OCH₂-CH₂-O) 4.88 (t, J = 4, H-C \leq_{0}^{O}).
- 9 8: oil; MS, m/e (relative intensity): 192 (M^{++} , 1), 166 (1), 149 (100), 122 (7); ¹H NMR (CDCl₃, 400 MHz) 0.91 (t, J = 7.5 Hz, 3H, CH₃), 1-2.2 (m, 14H, CH₂), 2.4 (m, 2H, H-2 and H-6), 4.16 (d, J = 7.5 Hz, 1H, CH-CN); ¹³C NMR (CDCl₃, 50 MHz) 14.2 (CH₃), 18.1, 23.9, 26.7, 29.0, 30.1, 31.1, 36.1 (CH₂), 51.1 (C-3) 58.8 (C-9), 61.2 (C-5), 117.6 (CN).
- 10 $\underline{2}$: oil ; MS, m/e (relative intensity) : 223 (M⁺⁺, 1), 222 (1), 181 (15), 180 (99), 167 (15), 166 (100), 149 (17) ; ¹³C NMR (CDCl₃, 50 MHz) 14.2, 14.6 (2 CH₃), 19.0, 23.0, 24.7, 25.1, 26.5, 29.2, 30.1, 31.0, 32.4, 35.9 (CH₂), 56.7, 58.6, 59.1 (CH).
- 11 We thank Drs. J.W. Daly and T. Tokuyama for communicating to us that the $[\alpha]_D$ of the natural gephyrotoxin-223AB is also negative. Due to the instability and minute amount of material in their possession precise $[\alpha]_D$ value for the natural product has not as yet been obtained.
- 12 J.W. Daly, G.B. Brown, M. Mensah-Dwumah and C.W. Myers, <u>Toxicon</u>, 1978, <u>16</u>, 163 and 189.

(Received in France 29 January 1985)